Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm across the Central African Republic Using the MODIS Active Fire Product

نویسندگان

  • Patrick H. Freeborn
  • Martin J. Wooster
  • Gareth Roberts
  • Weidong Xu
چکیده

Satellite-based remote sensing of active fires is the only practical way to consistently and continuously monitor diurnal fluctuations in biomass burning from regional, to continental, to global scales. Failure to understand, quantify, and communicate the performance of an active fire detection algorithm, however, can lead to improper interpretations of the spatiotemporal distribution of biomass burning, and flawed estimates of fuel consumption and trace gas and aerosol emissions. This work evaluates the performance of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Thermal Anomaly (FTA) detection algorithm using seven months of active fire pixels detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) across the Central African Republic (CAR). Results indicate that the omission rate of the SEVIRI FTA detection algorithm relative to MODIS varies spatially across the CAR, ranging from 25% in the south to 74% in the east. In the absence of confounding artifacts such as sunglint, uncertainties in the background thermal characterization, and cloud cover, the regional variation in SEVIRI’s omission rate can be attributed to a coupling between SEVIRI’s low spatial resolution detection bias (i.e., the inability to detect fires below a OPEN ACCESS Remote Sens. 2014, 6 1891 certain size and intensity) and a strong geographic gradient in active fire characteristics across the CAR. SEVIRI’s commission rate relative to MODIS increases from 9% when evaluated near MODIS nadir to 53% near the MODIS scene edges, indicating that SEVIRI errors of commission at the MODIS scene edges may not be false alarms but rather true fires that MODIS failed to detect as a result of larger pixel sizes at extreme MODIS scan angles. Results from this work are expected to facilitate (i) future improvements to the SEVIRI FTA detection algorithm; (ii) the assimilation of the SEVIRI and MODIS active fire products; and (iii) the potential inclusion of SEVIRI into a network of geostationary sensors designed to achieve global diurnal active fire monitoring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time detection of wildlife using NOAA/AVHRR data Study area :(Kayamaki Wildlife Refuge)

Forest fire in recent years has paid great attention to climate change and ecosystems. Remote sensing is a quick and inexpensive way to detect and monitor forest fires on a large scale. The purpose of this study was to identify forest and rangeland fire hazards using NOAA / AVHRR in Kayamaki Wildlife Refuge. For the purpose of this study, the history of the fire-burns occurred in MODIS products...

متن کامل

The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment

a r t i c l e i n f o The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in October 2011 aboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite. The VIIRS instrument carries two separate sets of multi-spectral channels providing full global coverage at both 375 m and 750 m nominal resolutions every 12 h or less depending on the latitude. In this study, we i...

متن کامل

LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis

Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational “active fire” products have been developed from geostationary EO data, often with the aim of supporting bioma...

متن کامل

Meteosat SEVIRI Fire Radiative Power (FRP) Products from the

4 Wooster, M.J., Roberts, G., Freeborn, P. H., Xu, W., Govaerts, Y., Beeby, R., 5 He, J. , A. Lattanzio, Fisher, D., and Mullen, R. 6 7 8 1 King’s College London, Environmental Monitoring and Modelling Research Group, 9 Department of Geography , Strand, London, WC2R 2LS, UK. 10 2 NERC National Centre for Earth Observation (NCEO), UK. 11 3 Geography and Environment, University of Southampton, Hi...

متن کامل

Localization Boyan algorithm to detect forest fires from MODIS sensor images

Of phenomena which much damage and irreparable import to forests and natural resources is the fire that each year, more than 100 fires occur in Iran and thousands of hectares of trees and plants eliminates. Given that fire risk is high in most parts of the world, full and continuous monitoring on this natural phenomenon, is essential. Use remote sensing is a way to identify and manage fire. Ahe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014